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Benign familial neonatal convulsions (BFNC) is an autosomal dominant epilepsy of
infancy, with loci mapped to human chromosomes 20q13.3 and 8q24. By positional
cloning, a potassium channel gene (KCNQ2) located on 20q13.3 was isolated and found
to be expressed in brain. Expression of KCNQ2 in frog (Xenopus laevis) oocytes led to
potassium-selective currents that activated slowly with depolarization. In a large ped-
igree with BFNC, a five–base pair insertion would delete more than 300 amino acids from
the KCNQ2 carboxyl terminus. Expression of the mutant channel did not yield measur-
able currents. Thus, impairment of potassium-dependent repolarization is likely to cause
this age-specific epileptic syndrome.

Although most forms of idiopathic epilepsy
have a genetic component, only a few spe-
cific syndromes are single-gene disorders (1).

BFNC is an autosomal dominant idiopathic
epilepsy characterized by unprovoked partial
or generalized clonic convulsions, sometimes
with apneic spells, which occur during wake-
fulness and sleep. Seizures typically start
around day 3 of life and most often disappear
after several weeks or months (2). However,
about 10 to 15% of patients have febrile or
afebrile seizures later in childhood. Gene loci
for BFNC have been mapped to chromo-
some 20q13.3 (3) and to chromosome 8q24
(4). Most families in which the disorder
occurs are linked to chromosome 20.
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Fig. 1. (A) Physical mapping of KCNQ2. The localization and orientation of
KCNQ2 with respect to the polymorphic markers D20S20 (RMR6) and
D20S24 (IP20K09) are given. KCNQ2 and CHRNA4 are separated by ap-
proximately 30 kb. CHRNA4 (a4 subunit of the neuronal nicotinic acetylcho-
line receptor) has been identified as the gene responsible for autosomal
dominant nocturnal frontal lobe epilepsy (ADNFLE) in two unrelated families
(26, 30). Cosmid- (C6-2, C19-2, C30-5) and P1-clone numbering refers to a
previously published contig (5). (B) predicted amino acid sequences (31) of
KCNQ2 and alignment with KvLQT1 [KCNQ1 (9)]. The six potential trans-
membrane-spanning regions and the P putative pore region are shaded
and underlined. Pluses indicate homology between the aligned amino
acids. The variable exon of 10 amino acids at position 372 is shown in
italics, and its amino acids do not enter the numbering. A similar exon is not

present in the published KVLQT1 sequence. Thin vertical lines indicate the
presence of introns in KCNQ2 (reported here) or in KVLQT1 (29); the list for
KCNQ2 is not complete. The truncated COOH-terminus caused by the
5-bp insertion in the BFNC family is shown above the KCNQ2 sequence. It
leads to a truncated channel of 536 residues. This truncation occurs in a
region highly conserved between KvLQT1 and KCNQ2. A deletion-inser-
tion mutation (F) in the same region truncates KvLQT1 a few residues
downstream in a pedigree with the Jervell and Lange-Nielsen syndrome
(24). This region of KvLQT1 also harbors missense mutations (indicated by
circled W and C below the sequence) in patients with the long QT syn-
drome (23). (C) Tissue distribution of KCNQ2. Northern blot analysis (32) of
polyadenylated RNA from multiple human tissues (left) and from different
human brain regions (center and right).
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Using cosmid DNA from a previously
described contig in the chromosomal region
20q13.3 (Fig. 1A) (5), we isolated a 3.4-kb
partial cDNA clone from a human fetal
brain cDNA library and extended it by 4 kb
toward the 59 end by RACE (rapid ampli-
fication of cDNA ends) experiments (6).
Searching the GenBank database revealed
that the 59 open reading frame is roughly
50% identical to KvLQT1, a potassium
channel mutated in the long QT syndrome
(7), and a 1160–base pair (bp) stretch is
identical to a partial cDNA isolated previ-
ously (8). The KVLQT1 potassium channel
gene will be renamed KCNQ1 (9), and we
name the present homolog KCNQ2. Inter-
estingly, we have also identified (10) an-
other KCNQ homolog (KCNQ3) on hu-
man chromosome 8q24 close to the second
locus (4) for BFNC.

The complete open reading frame of
KCNQ2 encoded a protein of 844 amino
acids, with the hallmarks of K1 channels
defined by the shaker channel in Drosoph-
ila melanogaster (Fig. 1B) (11). Similar to
KvLQT1, the transmembrane block with
six putative transmembrane domains S1
through S6 was followed by a long cyto-
plasmic COOH-terminus. In addition to a
70% identity in the transmembrane block,
there was a conspicuous homologous re-
gion in the cytoplasmic COOH-terminus.
A splice variant isolated from adult brain
had an additional short exon encoding 10
amino acids roughly 50 residues COOH-
terminal from S6 (Fig. 1B). Northern
(RNA) analysis indicated that KCNQ2
was specifically expressed in the brain
(Fig. 1C). KCNQ2 message was wide-
spread in areas containing neuronal cell
bodies, but low in the spinal cord and in
the corpus callosum, which contains pri-
marily axons and glia.

Seizures are characterized by paroxys-
mal neuronal hyperexcitability. Ion chan-
nels that regulate neuronal excitability
have been proposed as possible epilepsy
genes (12). KCNQ2 was therefore an ex-
cellent candidate gene for BFNC. We par-
tially determined its genomic structure
(13) and screened (14) a large Australian
Caucasian pedigree (Fig. 2A) previously
linked to chromosome 20q13 (15) for mu-
tations in KCNQ2. We identified a 5-bp
insertion at the triplet encoding amino
acid 534 in a segment highly conserved
between KCNQ2 and KvLQT1 (Figs. 1B
and 2B). The resulting frameshift would
result in a premature stop, which would
truncate more than 300 amino acids. This
insertion cosegregated with BFNC but not
with febrile convulsions in the pedigree
(Fig. 2A) and was not found in a control
panel of 231 independent Caucasian blood
donors.

We then examined the functional ef-
fects of this mutation as further support for
its causative role in BFNC. Xenopus laevis
oocytes injected with KCNQ2 complemen-
tary RNA (cRNA) displayed a current (16)
that slowly activated at voltages more pos-
itive than –60 mV and was fully activated
at 0 mV (Fig. 3, A and B). The open
channel was slightly inwardly rectifying.
Ion substitution experiments (Fig. 3C) in-
dicated that the current was potassium se-
lective and had a K . Rb . Cs . Na
permeability sequence. These currents re-
sembled those of KvLQT1 in their perme-
ability sequence, voltage dependence, and
kinetics (17–19).

When we expressed the truncated
KCNQ2 protein, we could not detect cur-
rents differing from negative controls, in-
dicating that the mutation abolished
channel function. We then coinjected
mutant and wild-type (WT) cRNA at a

1:1 ratio to mimic the situation in a het-
erozygous patient. Currents were reduced
when compared to those recorded from
oocytes that were injected with the same
total amount of WT cRNA (Fig. 3, D and
E). There was no obvious dominant neg-
ative effect, however, but haploinsuffi-
ciency may be enough to explain the dom-
inant mode of inheritance of this disorder,
which generally occurs transiently during
infancy. Moreover, differences between
expression systems and the in vivo situa-
tion are not uncommon and may be due to
differences in protein stability or traffick-
ing. An attractive alternative hypothesis
is that the KCNQ2 channel protein nor-
mally interacts with a b subunit, and that
its absence in the oocyte explains the
failure to exhibit an obvious dominant
negative effect. The homologous KvLQT1
channel associates (17–19) with IsK (also
known as minK) (20), which significantly

Fig. 2. (A) Segregation of the mutated allele in the Australian pedigree with BFNC. Since the first
description of the family (15), individual IV-14 has been newly diagnosed to have febrile convulsions. He
is homozygous for the wild-type allele, implying that febrile convulsions are not caused by the KCNQ2
mutation, but represent a different phenotype. Individual III-10 is heterozygous for the mutation, but not
affected. This could be explained by the reduced penetrance (;80%) of the disease. x, individuals
carrying the 5-bp insertion; o, individuals with two normal alleles. Unmarked individuals were not typed.
A slash through symbols indicates a deceased individual. (B) KCNQ2 mutation identified in this pedigree.
For comparison, genomic sequences from an unaffected control (WT/WT) and of index patient III-5
(WT/ins5bp) are shown. The nucleotide sequences and translations are shown above the direct
sequencing traces from amplified exons. The insertion of five nucleotides (which can be explained by a
duplication) causes a frameshift that results in a premature stopcodon. The index patient is heterozy-
gous for this insertion.

G

E S L

WT/WT WT/ins5bp

R P Y D V M D V
A A C C T T T T TC C C C C C C CA A A AG G G G G G G G G G G G

E S L R P Y

C P T T *

D V M D V

A A C C T T
T T T

TTT
C C C C

C C C C
CCCCC

A A A A
AAA

G G G G G
G G G G G G

GGGGGG

B

REPORTS

www.sciencemag.org z SCIENCE z VOL. 279 z 16 JANUARY 1998 405



alters its currents, and mutations in IsK
can also lead to cardiac arrhythmias (21).
By contrast, when we expressed KCNQ2
together with IsK, currents did not seem to
differ significantly from a linear superpo-
sition of KCNQ2 currents with IsK cur-
rents (22) [stemming from Xenopus
KvLQT1/IsK heteromeric channels (18)].
Given the high homology of KCNQ2 to
KvLQT1, it is tempting to speculate that
there may exist an IsK-like b subunit for
KCNQ2 as well, and that mutations in its
corresponding gene may be responsible for
this or other forms of epilepsy.

Within the long COOH-termini of
both KCNQ2 and KvLQT1, there is a
highly homologous region. The KCNQ2
truncation found here, as well as some
KVLQT1 mutations leading to the long
QT syndrome (23) [including a truncation
(24)], occur exactly in this region (Fig.
1B). Thus, this part of the protein is likely
to serve an important, as yet unknown,
function.

Potassium channels are important for
repolarizing action potentials. Mutations
in the KCNA1 potassium channel cause
episodic ataxia, a nonepileptic disorder
with paroxysmal cerebellar symptoms, al-
though seizures occur in a few cases (25).
Because BFNC is associated with the loss
of function of a potassium channel, the
pathological neuronal hyperexcitability in
this epilepsy syndrome is likely to be
caused by impaired repolarization. Support
for the emerging concept of the idiopathic
epilepsies as ion channel disorders comes

from our previous observation of a nico-
tinic acetylcholine receptor subunit defect
in a form of human partial epilepsy (26)
and of calcium channel defects in certain
inherited forms of epilepsy in mice (27).
No other gene defects have yet been iden-
tified in human idiopathic epilepsies.
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Fig. 3. Electrophysiological
analysis of KCNQ2 and its mu-
tant in Xenopus oocytes. (A)
Two-electrode voltage clamp
traces of an oocyte expressing
KCNQ2. From a holding poten-
tial of –80 mV, the oocyte was
clamped for 4 s to values be-
tween –80 and 140 mV in
steps of 10 mV, followed by a
constant pulse to –30 mV. (B)
Open probability (popen) as a
function of voltage, as de-
termined by tail current anal-
ysis. Half-maximal popen is at
–37 6 2 mV, and the apparent
gating charge is 3.7 6 0.4 (n 5
12, 6SD). (C) Shift of reversal
potential with the external K
concentration (n 5 8); the shift
(53 mV per decade) indicates a
channel predominantly selective for K1. Substitution of external K1 by other cations yields the following
permeability ratios: PK/PRb 5 1.27 6 0.01; PK/PCs 5 7.4 6 0.5; and PK/PNa 5 51 6 4 (6SEM, n 5 9).
(D) Current traces of WT KCNQ2, a 1:1 coinjection of WT and mutant KCNQ2 (WT/mutant), mutant
KCNQ2, and mock-injected control oocytes. The traces for mutant KCNQ2 and control oocytes cannot
be distinguished. From a holding potential of –80 mV, the voltage was clamped for 4 s to 120 mV.
Except for the last set of experiments, the same total amount of cRNA (5 ng) was injected into single
oocytes. (E) Mean currents (after 4 s at 120 mV) averaged from several experiments as in Fig. 3D. The
error bars indicate SEM (n 5 5 to 10).

SCIENCE z VOL. 279 z 16 JANUARY 1998 z www.sciencemag.org406


