A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy

Jeanne T Paz1, Astra S Bryant1, Kathy Peng1, Lief Fenno2, Ofer Yizhar2, Wayne N Frankel3, Karl Deisseroth2 & John R Huguenard1

Cortico-thalamo-cortical circuits mediate sensation and generate neural network oscillations associated with slow-wave sleep and various epilepsies. Cortical input to sensory thalamus is thought to mainly evoke feed-forward synaptic inhibition of thalamocortical (TC) cells via reticular thalamic nucleus (nRT) neurons, especially during oscillations. This relies on a stronger synaptic strength in the cortico-nRT pathway than in the cortico-TC pathway, allowing the feed-forward inhibition of TC cells to overcome direct cortico-TC excitation. We found a systemic and specific reduction in strength in GluA4-deficient (Gria4−/−) mice of one excitatory synapse of the rhythmonic cortico-thalamo-cortical system, the cortico-nRT projection, and observed that the oscillations could still be initiated by cortical inputs via the cortico-TC-nRT-TC pathway. These results reveal a previously unknown mode of cortico-thalamo-cortical transmission, bypassing direct cortico-nRT excitation, and describe a mechanism for pathological oscillation generation. This mode could be active under other circumstances, representing a previously unknown channel of cortico-thalamo-cortical information processing.

RESULTS
GluA4 deficiency enhances thalamocortical oscillations
We assessed the electroencephalographic phenotype of Gria4−/− mice by performing electroencephalographic (EEG) recordings in freely moving animals. All of the Gria4−/− mice (n = 5) exhibited spontaneous spike-and-wave discharges (SWDs) associated with a behavioral arrest (Fig. 1a,b), consistent with previous findings in Gria4−/− and hypomorphic mutant mice20. The intra-SWD frequency, revealed by spectral analysis of the EEG signals, ranged from 5–9 Hz (Fig. 1c). SWDs (n = 290) recorded from five Gria4−/− mice occurred once every minute and had a variable duration (1–30 s). Systemic injection of ethosuximide (ETX), a first choice anti-absence drug, abolished SWDs in two of three mice (Fig. 1d). In one mouse, SWD frequency was reduced, from 0.5 per min to 0.2 per min. Vehicle injection did not affect SWD recurrence frequency (pretreatment, 0.6 ± 0.3 SWDs per min, mean ± s.e.m.; pretreatment, 0.9 ± 0.3 SWDs per min, n = 3 mice; P > 0.5). Vehicle injection did not affect SWD recurrence frequency (pretreatment, 0.7 ± 0.2 SWDs per min; saline, 1.6 ± 1.0 SWDs per min, n = 3 mice; P > 0.4; Fig. 1d).

To investigate the effects of GluA4 deficiency on thalamic circuit function, we examined the properties of evoked thalamic oscillations.

1Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. 2Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA. 3The Jackson Laboratory, Bar Harbor, Maine, USA. Correspondence should be addressed to J.R.H. (john.huguenard@stanford.edu).

Received 24 November 2010; accepted 28 June 2011; published online 21 August 2011; doi:10.1038/nn.2896
Gria4−/− mice display spontaneous SWDs. (a) EEG recordings from a Gria4−/− mouse, showing differential traces from two electrodes, over the right frontal and left frontal surfaces of the cerebral cortex. SWD occurrence in the EEG was associated with a reduced electromyographic (EMG) activity. (b) Representative 400-ms-long ictal and interictal EEG recordings. (c) Power spectrum of ictal (gray) and interictal (black) EEG activities (from left frontal trace). Arrow indicates the dominant frequency of the ictal EEG signal. (d) Plots of SWD duration and incidence from a Gria4−/− mouse, treated with either 200 mg per kg ethosuximide (ETX, left) or saline solution (0.9% NaCl, right), injected intraperitoneally after 60 min of recording (arrows). Cessation of SWDs post-injection was seen only in the ETX-treated mouse, followed by a recovery of SWD activity (1-min bins).

In horizontal thalamic slices, electrical stimulation of the internal capsule evoked rhythmic activity in the thalamus (Fig. 2a), consistent with previous findings. Despite the absence of GluA4, the duration of evoked rhythmic activity was increased in thalamic slices from Gria4−/− mice compared with wild type (Gria4+/−, 1.11 ± 0.16 s, n = 7 slices; wild type, 0.40 ± 0.18 s, n = 8 slices; P < 0.05; Fig. 2b). These findings indicate that the absence of GluA4 results, paradoxically, in a hyperexcitable thalamic network.

GluA4 deficiency reduces spontaneous excitation in nRT
To determine whether the absence of GluA4 affected the synaptic activity of nRT GABAergic neurons, we examined spontaneous excitatory post-synaptic currents (sEPSCs, see Online Methods) in cells from wild-type and Gria4−/− mice. Despite the loss of this major AMPA receptor, electrophysiological recordings detected sEPSCs in all of the nRT neurons (16 of 16 neurons from 12 Gria4−/− mice; Fig. 3). However, the mean frequency of sEPSCs was reduced twofold in nRT neurons from Gria4−/− mice compared with wild type (Fig. 3a,b,f). We analyzed the characteristics of isolated sEPSCs in nRT neurons from wild-type (n = 20 cells) and Gria4−/− (n = 16 cells) mice. In both wild-type and Gria4−/− mice, sEPSCs were characterized by fast activation kinetics (Fig. 3c,d,f). In Gria4−/− mice, the amplitude of sEPSCs was reduced (∼18%; Fig. 3c,f). Moreover, decay kinetics were slower in Gria4−/− nRT neurons as measured by both the sEPSC weighted bi-exponential decay-time constant (τ1,2) and the half-width (Fig. 3c,d,f). These alterations in sEPSC frequency, amplitude and kinetics were observed across all populations of events, as demonstrated by the cumulative probability histograms (Fig. 3e).

In contrast with nRT neurons, sEPSCs in TC cells were unaffected by Gria4 deficiency in terms of amplitudes and kinetics (Supplementary Fig. 1) and their frequency was not reduced (data not shown). These results indicate that the absence of GluA4 reduces spontaneous excitationary transmission in nRT, but not in TC, neurons. We then used an optogenetic approach to determine whether the reduced sEPSCs in nRT were the result of a reduced synaptic strength at CT-nRT, TC-nRT, and/or CT-TC synapses.

GluA4 deficiency does not affect EPSCs at TC-nRT synapses
First, we examined the TC-nRT pathway by expressing ChR2-containing virus in neurons in the ventrobasal complex (VB) of somatosensory thalamus, which is functionally connected to the somatosensory cortex. We injected in VB thalamus with a virus carrying a transgene encoding a ChR2–enhanced yellow fluorescent protein (EYFP) fusion protein driven by the Camk2a promoter and observed intense ChR2-EYFP expression in TC relay nuclei (Fig. 4a) and their projection in nRT (Fig. 4b) 4–8 weeks later. Fluorescence resulting from EYFP expression in TC neurons was seen during recordings in live slices as well as in fixed sections (Fig. 4a). High-magnification confocal images revealed that only TC neurons expressed the virus. Light stimulation of ChR2-expressing TC neurons evoked direct depolarizations with short latencies (data not shown).

To examine the properties of EPSCs evoked in nRT by selective optical stimulation of presumably one TC axon (Fig. 4c), we used a minimal stimulation protocol (see Online Methods). Minimally evoked EPSCs (eEPSCs) were similar in wild-type and Gria4−/− mice (Fig. 4d). We analyzed the mean eEPSC response from multiple nRT neurons from three wild-type (n = 14 cells) and three Gria4−/− (n = 9 cells) mice. The amplitude of minimal eEPSCs was similar in wild-type and Gria4−/− mice (wild type, 99.8 ± 20.4 pA; Gria4−/−, 89.5 ± 9.93 pA; P > 0.7). In both genotypes, eEPSCs were characterized by fast activation kinetics (10–90% rise-time: wild type, 0.29 ± 0.01 ms; Gria4−/−, 0.29 ± 0.02 ms; P > 0.8) and fast decay kinetics (τ1,2: wild type, 0.74 ± 0.05 ms; Gria4−/−, 0.72 ± 0.09 ms; P > 0.8). We extended the analysis beyond mean values and found that these results were also reflected in cumulative probabilities that represent heterogeneity of events (Fig. 4e). Moreover, the input-output relationships of eEPSCs were not affected in the TC-nRT pathway (Supplementary Fig. 2). These findings indicate that the TC-nRT pathway is not affected by the absence of GluA4.

GluA4 deficiency reduces EPSCs at CT-nRT synapses
We next asked whether the absence of GluA4 altered synaptic excitation in the CT-nRT pathway. For this purpose, we injected ChR2-EYFP virus into deep layers of somatosensory cortex, which project to thalamus, and EYFP labeling in the cortex, as assessed from coronal cortical sections, was found throughout deep cortical layers (Fig. 5a) at the injection site. In the same hemisphere, EYFP labeling was found in horizontal thalamic sections in CT axons in nRT (Fig. 5b). Fluorescence resulting from EYFP expression in CT axons was seen during recordings in live
slices as well as in fixed sections. High-magnification confocal images revealed that virus expression was specific to CT somata and axons; nRT neurons did not express the virus (Fig. 5b).

To examine the properties of EPSCs evoked in nRT by selective optical stimulation of CT axons (Fig. 5c), we used a minimal stimulation protocol. Resulting minimal eEPSCs were reduced in $Gria^4–/–$ versus wild-type mice (Fig. 5d). The mean eEPSC response was analyzed from multiple nRT neurons from three wild-type (n = 9 cells) and four $Gria^4–/–$ (n = 6 cells) mice. Notably, eEPSCs had slower decay kinetics and reduced amplitude in $Gria^4–/–$ mice ($\tau_{1/2}$; wild-type, 1.33 ± 0.21 ms; $Gria^4–/–$, 1.59 ± 0.28 ms; amplitude: wild-type, 43.5 ± 4.41 pA; $Gria^4–/–$, 29.3 ± 3.78 pA; P < 0.05; Fig. 5d,e). Synaptic efficacy, measured by the charge of eEPSCs, was also reduced in $Gria^4–/–$ mice (wild-type, 72 ± 3.6 IC; $Gria^4–/–$, 53 ± 3.5 IC; P < 0.01), indicating that longer decay kinetics did not compensate for the reduced amplitude. Moreover, input-output relationships for eEPSCs were reduced in the CT-nRT pathway (Supplementary Fig. 2). These findings suggest that the CT-nRT excitatory pathway is weakened in the absence of GluA4.

GluA4 deficiency does not affect EPSCs at CT-TC synapses

In VB thalamus, clusters of EYFP-expressing CT axons were located in barreloids, as revealed by cytochrome C staining from the same slices (Fig. 6a). High-magnification confocal images revealed that virus expression was specific to CT somata and axons; TC neurons did not express the virus (Fig. 6b).

We examined whether the absence of GluA4 weakens the CT-TC pathway as it did the CT-nRT pathway. For this purpose, we examined CT-TC transmission by optical stimulation of CT axons (Fig. 6c) from the same wild-type and $Gria^4–/–$ mice slice preparations as we used to study the CT-nRT pathway.

Minimal eEPSCs were similar in wild-type and $Gria^4–/–$ mice (Fig. 6d,e). We analyzed the mean eEPSC response from multiple VB TC neurons from wild-type (n = 5) and $Gria^4–/–$ (n = 5) mice. The amplitude of minimal eEPSCs was similar in wild-type and $Gria^4–/–$ mice (wild-type, 22.3 ± 0.83 pA; $Gria^4–/–$, 22.3 ± 1.8 pA; P > 0.9). In both genotypes, eEPSCs were characterized by similar activation kinetics (10–90% rise-time: wild-type, 0.95 ± 0.26 ms; $Gria^4–/–$, 0.80 ± 0.16 ms; P > 0.6), decay kinetics ($\tau_{1/2}$; wild-type, 3.7 ± 1.11 ms; $Gria^4–/–$, 3.9 ± 0.7 ms; P > 0.8) and half-width (wild-type, 1.4 ± 0.2 ms; $Gria^4–/–$, 1.4 ± 0.3 ms; P > 0.8). These findings suggest that the CT-TC pathway is not affected in absence of GluA4. Notably, in the same slices, CT-nRT synaptic strength was weakened, whereas the CT-TC pathway was unaffected in $Gria^4–/–$ mice, suggesting that the altered response in nRT did not result from reduced optical activation from potential differences in viral expression between $Gria^4–/–$ and wild-type mice.

CT-nRT versus TC-nRT pathways

In both wild-type and $Gria^4–/–$ mice, cortically evoked EPSCs in nRT were smaller in amplitude and slower in rise and decay kinetics than TC-evoked responses (Supplementary Fig. 3). In wild-type mice, minimal EPSCs evoked by selective activation of CT axons were characterized by
Figure 5 Selective optical stimulation of CT axons evokes smaller EPSCs in nRT neurons from Gria4−/− mice. (a) Low-magnification fluorescence image of a coronal slice from the barrel cortex 6 weeks following the intra-cortical virus injection. Fluorescence indicates ChR2 expression in the deep cortical layers (5/6). Scale bar represents 400 μm. (b) Higher magnification of a confocal image stack projection from a horizontal thalamic slice showing ChR2-expressing CT fibers in nRT. Scale bar represents 20 μm. (c) Experimental configuration showing locations of virus injection (cortex, green spot), recording electrode (in nRT) and laser stimulation (blue beam). Stimuli were directed at ChR2-expressing CT axons and the eEPSC was recorded from an nRT cell. VB thalamus was cut from the slices (dashed line) to avoid a dysinaptic activation of nRT cells via the CT-TC-nRT pathway. (d) Minimal EPSCs (50% of failures and 50% of eEPSCs) in single nRT neurons evoked by light activation of a CT axon from wild-type and Gria4−/− mice. Top right, averaged eEPSCs from the corresponding nRT cells plotted on the same scale. Bottom right, normalized eEPSCs showing slower decay kinetics in Gria4−/− mice (τ_D,W = 1.89 ms) than in wild-type mice (τ_D,W = 1.18 ms). (e) Cumulative probability histograms of isolated events from wild-type mice (180 events from 9 nRT cells, 20 events per cell) and Gria4−/− mice (120 events from 6 nRT cells, 20 events per cell) show a reduction in amplitude (P < 10−10), an increase in τ_D,W (P < 0.01) and no change in 10–90% rise time (P > 0.1). Statistical significance in e was determined by the Kolmogoroff-Smirnoff test.

Figure 6 Selective optical stimulation of CT axons evokes similar EPSCs in TC neurons from wild-type and Gria4−/− mice. (a) Left, low-magnification fluorescence image of a horizontal thalamic slice 6 weeks after the virus injection in the barrel cortex. The image was taken following fixation after electrophysiological recordings of TC cells from the same slice. Fluorescent bundles corresponding to ChR2-expressing CT axonal terminals were observed in VB (dashed circle). Scale bar represents 200 μm. Right, cytochrome C staining from the same slice illustrating barreloids (dashed circle). (b) High-magnification confocal image stack projection from a horizontal thalamic slice showing ChR2-expressing CT fibers in VB thalamus. Scale bar represents 20 μm. (c) Experimental configuration showing the locations of virus injection (cortex, green spot), recording electrode (in VB) and laser stimulation (blue beam). Stimuli were directed at ChR2-expressing CT axons and the eEPSCs were recorded from a TC cell. (d) Minimal EPSCs (50% of failures and 50% of eEPSCs) in single TC neurons evoked by light activation of a CT axon from wild-type and Gria4−/− mice. Right, averaged eEPSCs from the same TC cells plotted on the same scale. (e) Cumulative probability histograms of isolated events from wild-type mice (50 events from 5 TC cells, 10 events per cell) and Gria4−/− mice (50 events from 5 TC cells, 10 events per cell) demonstrate no changes in amplitude (P > 0.3), τ_D,W (P > 0.05) and 10–90% rise time (P > 0.5). Statistical significance in e was determined by the Kolmogoroff-Smirnoff test.

an amplitude that was 2.3-fold smaller than that evoked by TC activation (CT-nRT, 43.5 ± 4.4 pA, n = 9 cells; TC-nRT, 99.8 ± 20.4 pA, n = 14 cells; P < 0.003) and were 1.8-fold slower (τ_D,W = 1.32 ± 0.21 ms, n = 9 cells; TC-nRT, 0.74 ± 0.05 ms, n = 14 cells; P < 0.05). In Gria4−/− mice, minimal EPSCs evoked by selective activation of CT axons were also characterized by an amplitude that was 3.1-fold smaller amplitude than that evoked by TC activation (CT-nRT, 29.3 ± 3.78 pA, n = 6 cells; TC-nRT, 89.5 ± 9.93 pA, n = 9 cells; P < 0.003) and 2.2-fold slower (τ_D,W = 1.59 ± 0.28 ms; TC-nRT, 0.72 ± 0.09 ms; P < 0.004).

Notably, the relative difference between CT- and TE-evoked EPSCs in nRT neurons was increased in Gria4−/− mice (TC-nRT:CT-nRT, ~3:1) compared with wild-type mice (TC-nRT:CT-nRT, ~2:1), which was a result of a weakened CT-nRT pathway and an enhanced TC-nRT pathway in the Gria4−/− mice (Supplementary Fig. 3). These results indicate that there is an enhanced imbalance between CT-nRT and TC-nRT pathways in the Gria4−/− mice, favoring TC versus CT synaptic inputs onto nRT neurons.

Synaptic integration in TC-nRT, CT-nRT and CT-TC pathways

We next asked whether synaptic integrative properties were also specifically reduced at CT-nRT synapses, leaving CT-TC and TC-nRT synapses unaffected. Thalamic neurons are capable of firing high-frequency bursts of action potentials both in vivo, during physiological spindle-wave activity and pathological SWDs30,32, and in vitro33,34. High-frequency firing in TC neurons leads to high-frequency bursts of excitatory postsynaptic potentials (EPSPs) in the target nRT neurons34. We examined whether this integrative property was altered in absence of GluA4 in the TC-nRT pathway by optically stimulating ChR2-expressing TC fibers at a high frequency and comparing the evoked firing properties in target nRT neurons from wild-type and Gria4−/− mice. Minimally stimulating (minimal intensity determined during voltage-clamp recordings as described for Fig. 4c–e) TC fibers drove similar action potential firing in nRT cells from both wild-type and Gria4−/− mice (Fig. 7a). This result indicates that integrative properties in the TC-nRT pathway are not affected in absence of GluA4 and suggests that activation of one TC fiber can drive robust firing in nRT cells.

We next examined whether evoked firing in the CT-nRT pathway was reduced in Gria4−/− mice. VB thalamus was cut from the slices (Fig. 5c) to avoid dysinaptic activation of nRT cells via the CT-TC-nRT pathway. This procedure did not affect the electrical membrane properties of nRT neurons (Supplementary Table 1). Minimally stimulating (minimal
We examined the effects of traditional electrical stimulation of the internal capsule (containing both CT and TC fibers) on the firing of nRT and TC cells. In contrast with optical stimulations, we used the minimal firing protocol (leading to ~50% of responses that were suprathreshold for action potential generation intermixed with action potential failures). Similar to optical stimulations, high-frequency electrical stimulations led to robust and long-lasting firing in TC neurons from Gria4−/− mice and only single action potentials in wild-type mice (Supplementary Fig. 5a,b,f,h). In wild-type mice, CT-nRT-TC feed-forward inhibition includes a late component that is mediated by GABA_A receptors3,35,38, which was not blocked in these experimental conditions. Notably, this prolonged firing in TC cells was followed by a late and enhanced nRT cell firing in Gria4−/− mice (1–12 action potentials) that was not observed in wild-type mice (Supplementary Fig. 5c,d). Thus, the threshold electrical stimulation, which was similar in both genotypes (wild type, 24.6 ± 1.89 V, n = 31 cells; Gria4−/−, 27.5 ± 3.27 V, n = 18 cells; P > 0.4), induced an overall higher firing rate in nRT neurons from Gria4−/− than in those from wild-type mice (Supplementary Fig. 5c,d). Notably, passive and active intrinsic electrical membrane properties in both TC and nRT neurons were similar between wild-type and Gria4−/− mice (Supplementary Fig. 4a–c and Supplementary Table 1). Thus, the more robust and prolonged evoked firing in TC and nRT neurons in Gria4−/− cannot be accounted for by a change in intrinsic membrane excitability. Differences in optically or electrically evoked firing between Gria4−/− and wild-type mice were not dependent on membrane potential (between −55 mV and −90 mV, data not shown), indicating that they were independent of firing mode (that is, burst versus regular).

DISCUSSION

Although there is some controversy regarding the role of the thalamus in seizure initiation, it is regarded as an important rhythm generator in the thalamocortical network3,7,10,34. We found that GluA4 deficiency specifically and selectively reduced the strength of CT-nRT, but not TC-nRT, synapses, which is surprising given the prominent expression of GluA4 receptors in nRT. GluA4 deficiency did not affect the fastest EPSCs in nRT (that is, TC-nRT EPSCs), suggesting that GluA4 is not strictly required for fast kinetics. This is surprising to us, as the AMPA receptor subunit GluA4 is thought to show the fastest kinetics3,37,38 and its loss would be expected to prolong the TC-nRT EPSCs in nRT.
Specific weakening of CT-nRT synapses led to a loss of CT-nRT-TC feed-forward inhibition, which resulted in increased CT-TC excitability and the initiation of synchronous network oscillation in thalamus via the CT-TC-nRT channel. Finally, retention of TC-nRT excitation and of nRT-TC feedback inhibition in Gria4−/− mice allowed the maintenance of thalamic oscillations.

GluA4 deficiency specifically weakens CT-nRT synapses

In the absence of GluA4, sEPSCs in nRT neurons were reduced in amplitude (~18%) and showed twofold slower decay. AMPA receptors are tetrameric assemblies of subunits GluA1–4 and are generally heteromeric. GluA4 is expressed in a small number of neocortical neurons, but is mostly expressed in the thalamus, particularly in nRT, where it is the predominant AMPA receptor subunit at the CT-nRT synapse, with 3.7-fold higher expression on nRT than on TC neurons. GluA4-containing receptors have the fastest desensitization rate compared with other subunits expressed in the nRT. Thus, the loss of the GluA4 subunit is consistent with the reduced amplitude and the slower decay kinetics of sEPSCs in nRT neurons. These results are consistent with previous findings showing similar changes in sEPSC amplitude and kinetics in mice with a hypomorphic mutation in the Gria4 gene that was associated with a reduced expression of GluA4 protein. Furthermore, we found that, in the absence of GluA4, minimal EPSCs evoked by optical stimulation of putative single CT axons were also smaller in amplitude and slower in decay kinetics. Altogether, these results indicate that GluA4 is crucial for spontaneous and evoked CT-nRT transmission. Notably, minimal EPSCs evoked by optical stimulation of single CT axons were not affected by GluA4 deficiency. Our finding that the absence of GluA4 did not affect TC-nRT synaptic strength suggests that GluA4 has a minor role in TC-nRT synaptic transmission. In addition, our results suggest that the reduced frequency of sEPSCs in nRT neurons from Gria4−/− mice largely reflect a reduced strength in CT-nRT synapses, which are the most numerous excitatory synapses in nRT.

In contrast with nRT neurons, GluA4 deficiency did not affect sEPSCs or cortically evoked EPSCs in TC neurons. This suggests that GluA4 receptor have less involvement in CT-TC transmission than in CT-nRT transmission. This is consistent with the finding that there is a ~fourfold weaker expression of GluA4 at CT synapses in TC neurons compared with nRT neurons. A weak expression of GluA4 in TC neurons is consistent with a smaller amplitude of sEPSCs and eEPSCs in TC versus nRT neurons, 3.3-fold slower decay kinetics of sEPSCs in TC neurons compared with nRT neurons, and 2.8-fold slower decay kinetics of minimal EPSCs evoked by optical stimulation of single CT axons compared with those evoked in nRT. The fact that GluA4 deficiency does not affect excitatory currents in TC neurons could also be a result of a compensatory increase in expression of other AMPA receptor subunits, such as GluA3 and, to a lesser degree, GluA2, which are also expressed in the thalamus. The slower rise and decay kinetics of sEPSCs and eEPSCs in TC neurons compared with nRT neurons could also be a result of the fact that CT synapses on TC neurons are concentrated on distal dendrites. Discrepancies between our results and those of a previous study, which found similar EPSC kinetics in nRT and TC cells, could result from differences in the maturation state of mice that were used.

Why are nRT EPSCs evoked by CT activation faster than those evoked by CT activation? It is important to emphasize that the rise times and decay-time constants of minimal EPSCs evoked in nRT neurons by CT optical activation were much slower than those evoked by TC optical activation. This suggests that TC-nRT EPSCs originated from electrotonically closer synaptic terminals on the dendrites than did CT-nRT eEPSCs, rather than resulting from a stronger expression of GluA4 on TC-nRT synapses, as GluA4 deficiency had no effect on eEPSC kinetics in TC-nRT synapses.

Altogether, our results indicate that GluA4 deficiency specifically reduced CT-nRT synaptic strength without affecting CT-TC and TC-nRT synaptic strengths. Thus, the reduced excitation of nRT neurons in Gria4−/− mice results from a specific defect in CT synapses on nRT cells, which represent the main excitatory input onto nRT.

Mechanisms of thalamic hyperexcitability in Gria4−/− mice

Gria4−/− mice display absence epileptic seizures and thalamic circuit hyperexcitability. Even though GluA4 expression is minor in the cerebral cortex compared with the thalamus, we cannot exclude the notion that absence seizures could partially result from alterations in excitatory synaptic transmission in the cortex, presumably to a minor degree compared with thalamus. However, given that isolated thalamic slices are hyperexcitable and that synaptic strength is specifically reduced in CT-nRT pathway, we propose that hyperexcitability in the cortico-thalamo-cortical system ultimately results from a specific defect in CT-nRT synapses.

The increased excitability in thalamic networks is surprising because one would expect thalamic hypersynchronicity to be associated with an increased excitation (for example, in the TC-nRT pathway) rather than with a reduced excitatory strength. How does a reduced synaptic strength in the CT-nRT pathway lead to thalamic hyperexcitability and absence seizures? To address this question, we closely examined the cellular and synaptic mechanisms underlying the circuit hyperexcitability. Using optogenetics, we found that, in wild-type mice, CT inputs powerfully drive nRT cell firing, shunting direct CT-TC excitation. In Gria4−/− mice, the inability of CT inputs to drive nRT cell firing results in an inability of CT-nRT pathway to shunt the direct CT-TC excitation and allows CT inputs to robustly activate TC cells, thereby initiating an aberrant network oscillation. The oscillation is then maintained because the CT-nRT-TC circuit is intact.

In summary, we propose the following scenario of events leading to the initiation and maintenance of synchronous network oscillations. First, given the likely role of cortical output in the early stages of SWD, activation of CT neurons leads to direct and prolonged activation of TC neurons, as CT-nRT-TC feed-forward inhibition is reduced and the CT-TC pathway is unaffected. Second, this direct hyperactivation of TC cells by CT inputs is sufficient to hyperactivate nRT neurons, as the synaptic strength of the TC-nRT pathway is normally quite strong and is not weakened in the Gria4−/− mice. Third, nRT neurons fire high-frequency bursts of action potentials and inhibit TC neurons, which fire bursts of action potentials on recovery from inhibition. This sequence of events continues, leading to a robust oscillatory network in the cortico-thalamic-cortical loop that promotes SWD seizures (see also Supplementary Fig. 6). In light of the controversy regarding the potential roles of cortex and thalamus in SWD initiation, we propose that, in Gria4−/− mice, SWDs can initiate as a result of an abnormal ‘channel’ of synaptic transmission between cortex and thalamus. This mode of communication in Gria4−/−, but not wild-type, mice could allow intense, but physiologically relevant cortical activity to trigger epileptic thalamocortical network activity and lead to a transition between normal circuit function and epileptic seizure.

Our results describe a previously unknown circuit mechanism leading to absence epilepsy: a weakening of a single component of the CT excitatory pathway, the CT-nRT synapse. This ultimately leads to enhanced network synchrony from specific loss of feed-forward (CT-nRT-TC), but not feedback (TC-nRT-TC), inhibition. Our findings provide a new concept for the initiation of network oscillations that may apply to a variety of contexts; reduction of feed-forward inhibition enables afferent
excitatory inputs to recruit a critical mass of excitatory neurons whose simultaneous activation is sufficient to initiate synchronized network activities. Furthermore, this mode of information flow between cortex and thalamus may represent a previously unknown mode of sensory information processing. Indeed, when the CT-NC-rNT-TC window is open via reduction in CT-nRT-TC feed-forward inhibition, cortical inputs from layer 6 would become ‘drivers’, similar to those from layer 5 (ref. 47), directly engaging sensory thalamic neurons. Future studies should be aimed at determining whether this mode would be adaptive or maladaptive in the context of sensory processing.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.

ACKNOWLEDGMENTS

We thank I. Parada for her expert histology technical support and A. Herbert and S. Jin for their help with animal husbandry. We also thank T. Davidson for insightful discussions on the optogenetic approach and C. Lee for a generous help during virus injections. This work was supported by grants from the US National Institutes of Health and the National Institute of Neurological Disorders and Stroke (NS34774, 24240). The authors are grateful to T. Ralston and A. Herbert for help with reagents and experiments. The work was supported in part by the Foundation of the Future.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/natureneuroscience/. Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

© 2011 Nature America, Inc. All rights reserved.
ONLINE METHODS

We performed all of the experiments according to protocols approved by the Stanford Institutional Animal Care and Use Committee, and every precaution was taken to minimize stress and the number of animals used in each series of experiments.

Mice. *Gria4* knockout mice (B6;129P2-*Gria4*Δ1Dgn), constructed by Deltagen and obtained from the Mouse Mutant Regional Resource Consortium repository, were backcrossed to the C57BL/6J strain for ten generations and then maintained as a homozygous colony. Wild-type mice were maintained separately on a C57BL/6J background. We refer to the B6;129P2- *Gria4*Δ1Dgn mice as *Gria4*−/− mice.

EEG analysis. We anesthetized male mice at least 30 d postnatal using isoflurane inhalation at 1 min−1 oxygen flow (3% isoflurane (vol/vol) flow for induction, 1–2% isoflurane flow for maintenance). We injected the pre-operative analesic carprofen (20 mg per kg of body weight) intraperitoneally. We drilled four holes of approximately 0.6-mm diameter through the skull, each about 5 mm lateral from the sagittal suture and in line with lambda and bregma. A fifth hole was drilled in the interparietal bone, slightly lateral of midline for the ground electrode.

We mounted a small plug (2-mm dual pin gull wing connector socket, Digi-Key) with attached stainless steel wires (Medwire 316 SS 7/44T) terminated with screws (2.38-mm-long #303SS, J.J. Morris). We secured the screws into the skull holes with 2–3 turns each, and stabilized the whole unit with dental cement.

We performed EEG recordings after at least 7 d of postsurgery recovery. Mice were placed in a dedicated cage and attached to an XLTek 32 Channel EEG headbox via a 50-cm, 6 channel, plastic-encased cable. We collected simultaneous video and EEG recordings. We recorded spontaneous SWDs characteristic of absence seizures simultaneously with video monitoring for 60 min before ethosuximide and EEG recordings. We recorded spontaneous SWDs characteristic of absence seizures simultaneously with video monitoring for 60 min before ethosuximide and EEG recordings. We recorded spontaneous SWDs characteristic of absence seizures simultaneously with video monitoring for 60 min before ethosuximide and EEG recordings.

Thalamic oscillations. We placed horizontal slices (400 μm) containing somatosensory thalamus in an interface chamber at 34 °C and superfused them at a rate of 2 ml min−1 with oxygenated artificial cerebrospinal fluid (ACSF) containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaHPO4, 2 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3 and 10 mM glucose, equilibrated with 95% O2 and 5% CO2, pH 7.4, supplemented with 0.3 mM glutamine. We obtained extracellular multi-unit field recordings with monopolar tungsten microelectrodes (50–100 kΩ, FHCo) placed in VB thalamus and in nRT. We amplified the signals 10,000 times and band-pass filtered them between 100 Hz and 3 kHz. We delivered electrical stimuli to the internal capsule with a pair of tungsten microelectrodes (50–100 kΩ, FHCo). The stimuli were 100 μs in duration, 50 V in amplitude, and delivered every once 30 s.

In vitro slice preparation. We anesthetized and decapitated wild-type and *Gria4*−/− mice of either sex (postnatal day 18–120, P18–120) with pentobarbital (100 mg per kg, intraperitoneal). We rapidly removed the brains and immersed them in an ice-cold (4 °C) slicing solution containing 234 mM sucrose, 2.5 mM KCl, 1.25 mM NaH2PO4, 10 mM MgSO4, 0.5 mM CaCl2, 26 mM NaHCO3 and 11 mM glucose, equilibrated with 95% O2 and 5% CO2, pH 7.4. We prepared 270-μm-thick horizontal thalamic slices containing VB thalamus and nRT with a Leica VT1200 microtome (Leica Microsystems). We incubated the slices, initially at 32 °C for 1 h and then at 24–26 °C, in ACSF containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3 and 10 mM glucose, equilibrated with 95% O2 and 5% CO2, pH 7.4.

Electrophysiology. We made whole-cell patch-clamp recordings at 22–25 °C. Following incubation, we transferred brain slices to the recording chamber and superfused them with ACSF at a flow rate of 2 ml min−1. We obtained recordings from nRT and TC neurons visually identified using differential contrast optics with a Zeiss (Oberkochen) Axioskop microscope and an infrared video camera. Recording electrodes made of borosilicate glass had a resistance of 2–5 MΩ when filled with intracellular solution. For IPSCs, the internal solution contained 135 mM CsCl, 10 mM HEPES, 10 mM EGTA, 5 mM QX-314 (lidocaine N-ethyl bromide) and 2 MgCl2, pH adjusted to 7.3 with CsOH (290 mM). *E*_{Cl} was estimated to be −0 mV based on the Nernst equation. During IPSC recordings, we clamped the neurons at −70 mV and recorded pharmacologically isolated events during bath application of the ionotropic glutamate receptor blockers DNOX (6,7-dinitroquinoxaline-2,3-dione, 20 μM, Ascend Scientific) and APS (2-amino-5-phosphonopentanoic acid, 100 μM, Ascend Scientific). For EPSCs and current-clamp recordings, the internal solution contained 120 mM potassium glutonate, 11 mM KCL, 1 mM MgCl2, 1 mM CaCl2, 10 mM HEPES, 1 mM EGTA, pH adjusted to 7.4 with KOH (290 mM). *E*_{Cl} was estimated to be about −60 mV based on the Nernst equation. Potentials were corrected for −15 mV liquid junction potential. During EPSC recordings, we clamped the neurons at −80 mV and recorded pharmacologically isolated AMPA currents by bath application of the GABA_A receptor antagonist picrotoxin (50 μM, Tocris) and NMDA receptor antagonist (APS, 100 μM). We blocked NMDA receptors to determine whether the differences in decay kinetics of spontaneous and evoked EPSCs in *Gria4*−/− versus wild-type mice resulted directly from a lack of GluA4 receptors rather than from long-lasting NMDA currents. In all recording conditions, we monitored access resistance, and cells were included for analysis only if the access resistance was <18 MΩ and the change of resistance was <25% over the course of the experiment. In addition, we demonstrated the adequacy of voltage clamp by T-current steady-state inactivation protocols in which peak latencies remained constant after voltage-clamp steps to −75 mV from a range of hyperpolarizing conditioning potentials as previously described. We obtained evoked EPSCs and firing of nRT and VB TC cells with optical stimulations (see below) or with a concentric bipolar stimulating electrode positioned in striatum or internal capsule, activating both CT and TC fibers. Concerning electrical stimulations, we applied train stimuli (five pulses at 200 Hz) every 20 s. Antidromically activated TC neurons were not considered in the firing latency analysis (Supplementary Fig. 5b,f,h).

We recorded EPSPs and firing evoked by optical stimulations (five pulses at 70 Hz; Fig. 7a–c) in the presence of 100 μM A5P to ensure that differences in firing resulted from differences in AMPA receptors and not from secondary activation of NMDA receptors. In some experiments (Fig. 7c), we bath applied picrotoxin (50 μM) and CGP 54626 (60 nM, Tocris) to block GABA_A and GABA_B receptors, respectively. Given the properties of the opsin, it was not possible to use frequencies higher than 70 Hz (in contrast with electrical stimulations, performed at 200 Hz). However, 70-Hz stimulation was sufficient to drive burst firing in thalamic cells.

Optogenetics. We injected viruses carrying fusion genes for fluorescent proteins and ChR2 stereotaxically, generally bilaterally, into barrel cortex or VB thalamus of wild-type and *Gria4*−/− mice in vivo, between P22–35. Injection of viral DNA (AAV5/CamKII-
chR2(H134R)-eYFP) under Camk2a promoter results in expression only in excitatory cortical and thalamic neurons. We injected concentrated virus (2 x 10¹³ genome copies per milliliter) using a 1-μl syringe and 34-gauge needle; injected volume (900 nl for cortex and 600 nl for VB) and flow rate (100 nl min^{−1}) were controlled by pump (World Precision Instruments). For intra-cortical injections (wild type, n = 6 hemispheres from 3 mice; *Gria4*^{−/−}, n = 7 hemispheres from 4 mice), the stereotactic coordinates were 1.3 mm posterior to Bregma, 3 mm lateral to the midline and 1.15 mm below the cortical surface. For intra-thalamic injections (wild type, n = 6 hemispheres from 3 mice; *Gria4*^{−/−}, n = 6 hemispheres from 3 mice) the coordinates were 1.7 mm posterior to Bregma, 1.5 mm lateral and 3.5 mm below the cortical surface. We killed the mice 5–8 weeks following injections corresponding to P56–120 and acute horizontal brain thalamic slices were made for optical stimulations and in vivo recordings. We prepared thalamic slices and performed in vitro whole-cell recordings as described above. ChR2-expressing fibers were visualized with fluorescence microscopy. We optically activated ChR2-expressing CT and TC axons with blue laser microscopy (473 nm, 70 μW to 3 mW, 1–5 ms flashes; OEM Laser Systems) delivered with optic fiber (BFL 37–300, Thor Labs) upstream along the CT and TC pathways (see schematic diagrams in Figs. 4c, 5c and 6c). We used minimal stimulation intensity, defined as the light power that resulted in 50–70% failures (30–50% successes), fixed response kinetics and low response-amplitude variability. Consequent minimal eEPSCs presumably resulted from selective optical activation of single CT or TC axons presynaptic to the recorded cell. At the end of the recordings, we fixed the slices with 4% paraformaldehyde (wt/vol) solution, then resectioned at 80 μm and low- and obtained high-magnification images with fluo- rescence (Nikon) and confocal (Zeiss LSM 510) microscopes, respectively. In the intra-cortical virus injection experiments, we obtained both coronal cortical and
horizontal thalamic slices from the same mice and stained them for cytosome
C to confirm the virus injection site (barrel cortex) and to confirm the presence
of ChR2-expressing CT axons and terminals in the VB barreloids (Fig. 6a)30. We
recorded TC neurons from VB thalamus. Virus spread in somatosensory cortex
and thalamus was reproducible across mice. Stimulation intensity and duration
required for minimal eEPSCs were similar in Gria4−/− and wild-type mice, sug-
gesting that virus expression was similar in both genotypes. Intrinsinc electrical
membrane properties were not affected in ChR2-expressing TC neurons or in
their target nRT neurons (data not shown), and were not affected in nRT and TC
neurons from intra-cortical injection experiments (data not shown).

Data acquisition and analysis. For data acquisition and analysis, we used a
Digidata 1320 digitizer and pClamp9 (Molecular Devices). We amplified the
signals with Multiclamp (Molecular Devices), and sampled and filtered them at
10 kHz. We detected and analyzed EPSCs with wDetecta, a custom postsynaptic
current detection program (http://huguenardlab.stanford.edu/apps/wdetecta/).
We calculated the amplitude of action potentials as the potential difference
between their voltage threshold and the peak of the waveform. Numerical values
are given as means ± s.e.m. unless stated otherwise. We assessed statistical
significance by performing one-way ANOVA, the Mann–Whitney rank sum test
or the Kolmogorov-Smirnov test. We performed statistical analyses with Sigma
Stat 3.5 and Origin 7.0 (Microcal Software). For EPSCs, we fitted the peak-to-
baseline decay phase of the resulting current trace by the double exponential
function \(I = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2} \) (Fig. 3d), where \(A_1 \) and \(A_2 \) are the slow and fast
amplitude components, and \(\tau_1 \) and \(\tau_2 \) are the slow and fast decay-time constants,
respectively. We calculated the weighted decay-time constant (\(\tau_{D,W} \)) using
the equation

\[
\tau_{D,W} = \frac{\tau_1 A_1 + \tau_2 A_2}{A_1 + A_2}
\]

infarcts alter intrinsic excitability and synaptic excitation in the reticular thalamic
49. Dobrunz, L.E. & Stevens, C.F. Heterogeneity of release probability, facilitation, and
50. Wong-Riley, M.T. Endogenous perioxidatic activity in brain stem neurons as
demonstrated by their staining with diaminobenzidine in normal squirrel monkeys.